Blogia
Matemáticas Áureas

Teorema de Pitágoras Vs. Número Áureo

Teorema de Pitágoras Vs. Número Áureo

   Tomamos dos triángulos rectángulos semejantes los cuales han de compartir el ángulo recto y que las hipotenusas sean paralelas. Los catatos y la hipotenusa del mayor se llaman a, b y c respectivamente y llos del menor a, d y b respectivamente.

   Calculamos su razón de semejanza:

 a/d = b/a = c/b = r (razón de semejanza)

   Por tanto, debe ser:

      a = d · r

      b = a · r

      c = b · r

   Y tenemos:

 b = a · r = d · r · r = d · r2

 c = b · r = d · r2 · r = d · r3

   Así tenemos los valores a, b y c en función de d y r. Al ser rectángulos los triángulos, han de verificar el Teorema de Pitágoras (10 veces demostrado aquí).

      c2 = a2 + b2

      (d · r3)2 = (d · r)2 + (d · r2)2

   Ya que d y r son positivos, se puede simplificar dividiéndola por (d · r)2 y quedaría así:

      r4 = 1 + r2

   Vamos a hallar r resolviéndolo como una ecuación bicuadrada (r2 = t)

      t2 - 1 - t = 0

      t = (1 ± √5)/2

   Los resultados han de ser positivos, por tanto:

      t = (1 + √5)/2 = Φ

   Por tanto r.....

      r = √Φ

   Esto nos quiere decir que el Teorema de Pitágoras tiene relación con el número aúreo mediante la expresión ya expuesta.

  

¿Y esta publicidad? Puedes eliminarla si quieres
¿Y esta publicidad? Puedes eliminarla si quieres

0 comentarios

¿Y esta publicidad? Puedes eliminarla si quieres