Blogia
Matemáticas Áureas

El problema de Monty Hall

Supón que estás en un concurso, y se te ofrece escoger entre tres puertas: detrás de una de ellas hay un coche, y detrás de las otras, cabras. Escoges una puerta, digamos la nº1, y el presentador, que sabe lo que hay detrás de las puertas, abre otra, digamos la nº3, que contiene una cabra. Entonces te pregunta: "¿No prefieres escoger la nº2?". ¿Es mejor para ti cambiar tu elección?

El Problema de Monty Hall es un problema de probabilidad inspirado en el concurso de televisión estadounidense Let’s Make a Deal (Hagamos un trato). El problema debe su nombre al presentador del concurso: Monty Hall. La respuesta la daremos también el 1 de Agosto y vendrá acompañada de un comentario largo y aburrido :P. En serio, la respuesta es sorprendente, y aunque quizá cueste comprenderla al principio, una vez que se ha entendido comienzas a preguntarte qué pasará cuando el número de puertas crezca..., bueno, ahí lo dejo por ahora, en agosto hablaremos largo y tendido sobre esto (al menos los autores del blog...)

Solución (día 4 de agosto; estábamos de vacaciones)

Esta solución se basa en tres suposiciones básicas:

  • que el presentador siempre abre una puerta,
  • que la escoge entre las restantes después de que el concursante escoja la suya,
  • y que tras ella siempre hay una cabra.

La probabilidad de que el concursante escoja en su primera oportunidad la puerta que oculta el coche es de 1/3, por lo que la probabilidad de que el coche se encuentre en una de las puertas que no ha escogido es de 2/3. ¿Qué cambia cuando el presentador muestra una cabra tras una de las otras dos puertas?

Una suposición errónea es que, una vez sólo queden dos puertas, ambas tienen la misma probabilidad (un 50%) de contener el coche. Es errónea ya que el presentador abre la puerta después de la elección de jugador. Esto es, la elección del jugador afecta a la puerta que abre el presentador. No es un suceso aleatorio ni inconexo.

Si el jugador escoge en su primera opción la puerta que contiene el coche (con una probabilidad de 1/3), entonces el presentador puede abrir cualquiera de las dos puertas. Además, el jugador pierde el coche si cambia cuando se le ofrece la oportunidad.

Pero, si el jugador escoge una cabra en su primera opción (con una probabilidad de 2/3), el presentador sólo tiene la opción de abrir una puerta, y esta es la única puerta restante que contiene una cabra (partiendo de que la puerta que abre el presentador siempre esconde una cabra). En ese caso, la puerta restante tiene que contener el coche, por lo que cambiando lo gana.

En resumen, si mantiene su elección original gana si escogió originalmente el coche (con probabilidad de 1/3), mientras que si cambia, gana si escogió originalmente una de las dos cabras (con probabilidad de 2/3). Por lo tanto, el concursante debe cambiar su elección si quiere maximizar la probabilidad de ganar el coche.

¿Por qué sucede esto?

Porque lo que muestra el presentador no afecta a tu elección original, sino sólo a la otra puerta no escogida. Una vez se abre una puerta y se muestra la cabra, esa puerta tiene una probabilidad de 0 de contener un coche, por lo que deja de tenerse en cuenta. Si el conjunto de dos puertas tenía una probabilidad de contener el coche de 2/3, entonces, si una tiene una probabilidad de 0, la otra debe tener una probabilidad de 2/3. La elección, básicamente, consiste en preguntarte si prefieres seguir con tu puerta original o escoger las otras dos puertas. La probabilidad de 2/3 se traspasa a la otra puerta no escogida (en lugar de dividirse entre las dos puertas restantes de modo que ambas tengan una probabilidad de 1/2) porque en ningún caso puede el presentador abrir la puerta escogida inicialmente. Si el presentador escogiese al azar entre las dos puertas con cabras (incluyendo la del concursante), abriese una de ellas y luego diese de nuevo a elegir, entonces las dos puertas restantes sí tendrían la misma probabilidad de contener el coche.

NOTA: esto es parte de la solución que da wikipedia. Es un poco complicado de entender y esta es la solución más clara que hemos encontrado (imposible expresarlo con nuestras propias palabras...). Leedlo las veces que haga falta; hay muy pocas posibilidades (LOL) de pillarlo a la primera... 

¿Y esta publicidad? Puedes eliminarla si quieres
¿Y esta publicidad? Puedes eliminarla si quieres

1 comentario

Jéssica -

Por dios, sabeis que quedan.... muchos dias para que llegue agosto?? Malvados ¬¬
¿Y esta publicidad? Puedes eliminarla si quieres